Mastery for Maths Glossary

Mastery We think of mastery of a particular part of mathematics as the point when you can apply it to a totally new problem in an unfamiliar situation – it's not likely to happen at the end of a lesson or even a unit of work, but something we're all constantly striving to achieve.

The approach		
What we say	What we mean	
C + P + A	To develop conceptual understanding of an idea or a procedure or a technique, firstly we should use 'Concrete' materials to represent it. When this is understood, we should then move on to a 'Pictorial' representation before we eventually extend our understanding to include 'Abstract' forms. Most importantly, representing ideas in different forms helps to deepen our understanding and so enable us to apply ideas and skills in different contexts; it's not about C then C th	
Depth	We're constantly striving to ensure pupils have a real understanding of the mathematics they are learning. Rather than just a superficial ability to memorise or repeat sets of procedures (i.e. just "do" the maths), we aim for pupils to engage at a deep level, understanding and explaining what they're doing and how/why it works. They recognise a concept in an unfamiliar context.	
Fluency	Fluency is being flexible in the fundamentals of mathematics, having a deep conceptual understanding and being able to recall and apply knowledge rapidly and accurately.	
Growth Mindset	People with a growth mindset believe that "ability" to so something can be increased through effort; people with a fixed mindset think that "ability" is innate and cannot be change. We firmly believe that everyone can improve at mathematics - there's no "maths gene" and sustained effort is the path the success. People believe that understanding usually requires effort, resilience and curiosity.	
Key constructs	The "big ideas" in mathematics that are essential to understand to enable progress in the subject and to access other areas. These are the foci of our assessment.	
Manipulatives	We often refer to the concrete materials we use in representations – such as counters, blocks, straws etc. as manipulatives; objects we can we handle, feel, move around and manipulate so we can develop our physical understanding of maths concepts as the first part of the C+P+A journey.	
Problem Solving	Problem solving means applying mathematics to a variety of routine and non-routine problems including breaking down complex problems into a series of simpler steps and persevering in seeking solutions. Sometimes a problem can be in a real-life context, sometimes problems will just be within mathematics itself e.g. looking at number patterns.	
Reasoning	Reasoning in mathematics can be demonstrated by following a line of enquiry, making conjectures about relationships and/or generalisations. It includes developing the skills of presenting an argument and justifying a position using appropriate mathematical language and notation.	

<u>In Lessons</u>

Lesson Structure	<u>Lesson Structure</u>		
What we say	What we mean		
Do Now/ Fluency	A short activity at the start of a lesson that pupils can engage with, probably		
First	without any input at all from the teacher. This can be something to prepare them		
	for the material in the coming lesson or a more general activity to		
	practise/develop fluency or keep key skills sharp		
Talk Task/ Let's	Almost any task can be a "talk task". We always incorporate tasks into our lessons		
Explore	that provide pupils with opportunities to discuss the mathematics they are		
	working on, so developing both their reasoning and mathematical communication		
Independent	An independent task is one which pupils should be able to perform independent of		
Task	the teacher - not necessarily of each other as pair/group work may be useful in		
	any part of the lesson and with any task		
Plenary	A summary after a key part of learning (that might be at any point of the lesson)		
	that can, for example, review and assess progress; draw out key points from the		
	lesson, etc.		
<u>General</u>			
What we say	What we mean		
Bar modelling	This is way of representing a problem using pictures. It is often a very useful way		
	of making a complex word problem more accessible to pupils. Although it is not in		
	itself a method of solution, by "seeing" the problem in the visual form, it is them		
	often easier for pupils to see how to approach the problem		
Concrete	Any physical object that is used to represent a mathematical concept is a		
Manipulative	concrete manipulative e.g. counters, bead strings, fraction towers, people,		
	strawsthe possibilities are endless		
Dienes	Dienes blocks are concrete representations of numbers which are in exact		
	proportion to each other, so they can represent all powers of tens, such as ones,		
	tens, hundreds, thousands; hundredths, tenths, ones and tens; hundreds,		
	thousands, ten thousand, hundred thousand; etc. They help pupils to understand		
	the relationship between place value columns and see why we exchange e.g. one ten		
	for ten ones		
Geoboard	A peg board used to illustrate, for example, properties of lines and shapes,		
	counting, number, area, etc.		
Odd One Out	From a set of items, pupils are asked to identify which one is different from the		
	others and why. Often there can be more than one answer/reason and this is		
	useful in helping pupils to develop their reasoning		
Same/Different	Useful in developing reasoning, pupils are asked to compare two or more objects,		
tasks	expressions, representations etc. and asked to identify what they have in common		
	and how they differ		
Skip counting	Selecting a multiple and a starting point and then counting in that multiple, for		
	example, skip counting in fives from one would be 1, 6, 11, 16, 21, 26, 31, etc.		

<u>Mathematics</u>

The following glossary is not meant to be a used as a dictionary of mathematical terms but contains some of the terms that are frequently used in Mastery for Maths lessons.

What we say	What we mean
Addend	A number involved in addition.
Approximation	The number is not exact but is close, for example, it takes 57 minutes so you
	might say it takes approximately one hour
Dividend	The amount that you want to divide, for example, in $12 \div 3 = 4$, 12 is the dividend
Divisor	The number you divide by, for example, in $12 \div 3 = 4$, 3 is the divisor
Equal to	We refer to quantities being "equal to" each other rather than "equals" as this emphasises the fact that equality works in both directions e.g. consider the equation " $4 + 1 = 3 + 2$ ". Both sides of the equation are "equal to" each other, as both give the result 5
Equation	Says that two things are equal. It will have an equal to sign, for example, $8 - 3 = 5 \times 1$
Equivalent	Having exactly the same value e.g. 12 ÷ 2 = 4 + 2 Estimation Make an approximate calculation often based on rounding
Expression	Numbers, symbols and operators grouped together but without the equal to sign, for example, 5×3 or $6-1$
Factor	A number, that when multiplied with other factor(s), makes a given number, for example, 2 and 3 are factors of 6 because $2 \times 3 = 6$
Integer	A positive or negative whole number or zero
Minuend	A number from which the subtrahend is to be subtracted.
More/fewer and	More and fewer are used when we talk about discrete data, i.e. objects that can
greater/less	be counted using positive whole numbers. Greater and less are used when we talk about continuous data, i.e. data that can take any value within a range
Multiple	The result of multiplying a number by an integer, for example, 12 is a multiple of 3 and 4 because $3 \times 4 = 12$
Number bond	A way of representing a number using a part-part whole model, for example, if 3 and 7 are the parts then the whole is ten
Ones	We refer to the "ones" place value column between "tens" and "tenths" as the use of the word "units" is both unnecessary and confusing; the "unit" refers to the type of measure - cm, kg etc. whereas we count in "ones"
Partitioning	A way of breaking a number into at least two parts resulting in a number bond for that number, for example, 12 is equal to ten and two
	10 2
Product	The answer you get when you multiply two numbers
Proof	A formal mathematical argument that shows why a statement is always true
Quotient	The result after you divide the dividend by the divisor, for example in $12 \div 3 = 4$, 4 is the quotient

Rounding	A method used to approximate a number to the nearest appropriate power of ten,
	for example, 11.74:
	11.74 = 11.7 rounded one decimal place
	11.74 = 12 rounded to the nearest whole number
	11.74 = 10 rounded to the nearest multiple of ten
Subtrahend	The number or quantity to be subtracted from another.
Sum	The result of adding two or more numbers. This is often used mistakenly to mean
	any calculations, but sum should only be used for additions
Fraction Bar	The horizontal line used to separate the numerator and denominator in a fraction